Hydrogen Effects on the Spall Strength and Fracture Characteristics of Amorphous Fe-Si-B Alloy at Very High Strain Rates
نویسندگان
چکیده
A novel approach is suggested, using laser-induced shock wave measurements to estimate the effects of cathodic hydrogen charging on the mechanical properties and fracture characteristics of materials. This approach is applied to (1) determine the dominant mechanism of hydrogen embrittlement (HE) in an amorphous Fe80B11Si9 alloy; and (2) estimate the effects of the high pressures involved in cathodic charging. The dynamic spall strength of an amorphous Fe80B11Si9 alloy shocked before and after hydrogenation by a high-power laser to very high pressures (tens of giga Pascals) is measured. The dynamic spall strength of crystalline iron is measured as well for comparison. An optically recording velocity interferometer system (ORVIS) is used to measure the profile of the free surface velocity in time. The spall strength and the strain rate are calculated from the measurement of the free surface velocity as a function of time. Fracture characteristics are studied by scanning electron microscopy (SEM). The main conclusions are (1) the most reasonable mechanism of HE in the amorphous Fe-Si-B alloy is the high-pressure bubble formation; (2) the high pressures involved in cathodic hydrogen charging or laser-induced shock waves measurements may have similar effects on fracture characteristics; and (3) at very high strain rates, the spall strength is determined mainly by the interatomic bonds.
منابع مشابه
Hydrogen Effects on an Amorphous Fe-Si-B Alloy
HYDROGEN interaction with amorphous alloys has Ribbons (,25-mm thick) of amorphous Fe80B11Si9 were been studied extensively due to both scientific and technoused for this research. The ribbons were produced by planarlogical interest. In the framework of a more comprehensive flow casting and were kindly supplied by AlliedSignal Inc. investigation of hydrogen interaction with amorphous and (Parsi...
متن کاملThe Role of Second Phase Intermetallic Particles on the Spall Failure of 5083 Aluminum
5083 aluminum alloy is a light-weight and strain-hardened material used in high strain-rate applications such as those experienced under shock loading. Symmetric real-time (in situ) and end-state (ex situ recovery) plate impact shock experiments were conducted to study the spall response and the effects of microstructure on the spall properties of both 5083-H321 and 5083-ECAE ? 30 % cold-rolled...
متن کاملEFFECTS OF TiO2 ADDITIVE ON ELECTROCHEMICAL HYDROGEN STORAGE PROPERTIES OF NANOCRYSTALLINE /AMORPHOUS Mg2Ni INTERMETALLIC ALLOY
Abstract: Mg2Ni alloy and Mg2Ni–x wt% TiO2 (x = 3, 5 and 10 wt %) composites are prepared by mechanical alloying. The produced alloy and composites are characterized as the particles with nanocrystalline/amorphous structure. The effects of TiO2 on hydrogen storage properties are investigated using anodic polarization and electrochemical impedance spectroscopy. It is demonstrated that the initia...
متن کاملThe effect of temperature and strain rate on elongation to failure in nanostructured Al-0.2wt% Zr alloy fabricated by ARB process
A nano/ultra-fine grain Al-0.2wt% Zr alloy was produced by accumulated roll bonding (ARB) processafter 10 cycles. The fraction of high angle grain boundaries increased from 8% to 65.4% during 10passes during ARB process. This alloy was subjected to tensile test at different temperatures (523,573and 623 K) and strain rates (0.1 and 0.01 s-1). The optimum condition of temperature and strain rate ...
متن کاملFabrication of Soft Magnetic Fe-based Nanoalloy
The Fe-Ni-Sb-B amorphous alloy has been prepared by a solid-solid chemical reaction of ferric trichloride, nickel chloride, antimony chloride and potassium borohydride powders at room temperature. The inductive couple plasma study indicates that the resultant is composed of Fe 5.38 %, Ni 56.19 %, Sb 29.02 % and B 0.44 %. The XRD and thermal analysis show that the alloy is a non-strict sense amo...
متن کامل